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ABSTRACT

Sequential recommender systems aim to recommend the next items

in which target users are most interested based on their historical

interaction sequences. In practice, historical sequences typically

contain some inherent noise (e.g., accidental interactions), which

is harmful to learn accurate sequence representations and thus

misleads the next-item recommendation. However, the absence of

supervised signals (i.e., labels indicating noisy items) makes the

problem of sequence denoising rather challenging. To this end,

we propose a novel sequence denoising paradigm for sequential

recommendation by learning hierarchical item inconsistency sig-

nals. More specifically, we design a hierarchical sequence denoising

(HSD) model, which first learns two levels of inconsistency signals

in input sequences, and then generates noiseless subsequences (i.e.,

dropping inherent noisy items) for subsequent sequential recom-

menders. It is noteworthy that HSD is flexible to accommodate

supervised item signals, if any, and can be seamlessly integrated

with most existing sequential recommendation models to boost

their performance. Extensive experiments on five public benchmark

datasets demonstrate the superiority of HSD over state-of-the-art

denoising methods and its applicability over a wide variety of main-

stream sequential recommendation models. The implementation

code is available at https://github.com/zc-97/HSD.
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1 INTRODUCTION

Sequential recommender systems aim to recommend the next items

in which target users are most interested based on their historical in-

teraction sequences. The majority of existing studies feed sequences

into various deep models to learn sequence representations, includ-

ing recurrent neural networks (RNNs) [7, 11, 35], convolutional

neural networks (CNNs) [35], Transformer [15, 20, 32], and graph

neural networks (GNNs) [46]. In practice, historical sequences typ-

ically contain some inherent noisy items (e.g., accidental interac-

tions [36]), which cannot accurately reflect users’ preferences and

thus mislead the next-item recommendation.

Consequently, some pioneering studies have explored denoising

approaches to reduce the influence of noise and thus learn bet-

ter sequence representations. However, the absence of supervised

signals (i.e., labels indicating noisy items) makes the problem of se-

quence denoising rather challenging. One line of research proposes

to tackle this challenge in a “soft” way, which tries to implicitly

reduce noise’s influence on learning sequence representations. For

example, attention-based methods [20, 21, 23, 24, 48, 53] assign

lower attention weights to some less important items with respect

to the final sequence representation. In contrast, FMLP-Rec [59]

treats sequence representations as signals and further incorporates

Fourier Transform to filter out noise. Although these ideas can learn

better sequence representations, noisy items still exist in sequences

and may jeopardize recommendation performance.

Another latest line of research relies on comparing item-level

relevance to a target item to remove noisy items [29, 33, 37, 53].

Different from the previous line, this idea explicitly drops irrelevant

items in sequences, which can more thoroughly purge noisy infor-

mation. Nevertheless, it still has a significant drawback: historical

sequences typically contain many items that are irrelevant to the

next item, but may not be inherent noise. Eliminating them without

careful discrimination may lose useful information. Motivated by

the above observation, in this paper, we propose a novel sequence
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denoising paradigm for sequential recommendation by learning

hierarchical item inconsistency signals. The key idea is to resort to

more strict detectable signals to remove only reliable noisy items

without dropping advantageous information.

More specifically, we consider two types of noisy item signals

in sequences, including user-level intent signals and sequence-level

context signals. Intuitively, informative items in a sequence should

well reflect the user’s personalized preference (i.e., user-level intent

signals) and exhibit smooth sequentiality over surrounding items

(i.e., sequence-level context signals). Sequential recommendation

models should leverage only such items to learn high-quality se-

quence representations. For simplicity, we use “user-level signal”

and “sequence-level signal” to mean the above signals. Naturally,

we can make use of these two types of signals to identify inherent

noisy items: items exhibiting inconsistency with respect to these

signals are potentially noisy. However, in the absence of supervised

signals, depending on user- or sequence-level signals alone may

not be fully reliable. Therefore, we combine these signals to decide

whether to consider an item as noisy while preserving as much

useful information as possible. This general idea is illustrated in Fig-

ure 1. Given an input sequence, we use two levels of inconsistency

signals to pinpoint noisy items and generate a clean subsequence

for downstream sequential recommenders.

To instantiate the above idea, we propose a novel hierarchical

sequence denoising (HSD) model, which consists of different signal

generation layers for user- and sequence-level signals. The user-

level signal generation layer is equipped with two discriminators to

detect inconsistent items over the corresponding user’s short- and

long-term intents, while the sequence-level signal generation layer

is powered by a context-aware autoencoder and another discrimi-

nator to learn contextual semantics and detect inconsistencies by

comparing the difficulty levels of information reconstruction. Fur-

thermore, two types of curriculum learning strategies are adopted

in HSD to enhance the above layers’ learning capabilities. We pro-

vide a case study in Section 3.4 to help understand how the learned

signals affect the sequence denoising process.

We summarize our main technical contributions as follows.

• To the best of our knowledge, this is the first paper that proposes

to learn hierarchical inconsistency signals for sequence denoising.

The strict design choice enables to identify true inherent noisy

items without requiring any additional prior knowledge (e.g.,

supervised item signals).

• We propose two types of useful signals to identify inherent noisy

items in sequences. We show that sequence-level signals, which

have not been studied before, are critical to sequence denoising

and that the proposed two types of signals can complement each

other to improve the reliability of identified noisy items.

• We propose a novel hierarchical sequence denoising (HSD) model

to effectively learn different signals using different generation

layers. Our solution is flexible to accommodate supervised item

signals, if any, and can be seamlessly integrated intomost existing

sequential recommenders to boost their performance.

• Extensive experiments on five public benchmark datasets demon-

strate the superiority of HSD over state-of-the-art denoising

methods and its applicability over a wide variety of mainstream

sequential recommendation models.

Original Input Sequence

High consistency with intentUser-level signal

High consistency with contextSequence-level signal

Noisy item Noisy item
Generated subsequence

Figure 1: An illustration of hierarchical item inconsistency

signals for sequence denoising.

2 METHODOLOGY

Our denoisingmodel takes as input a set of sequences (i.e., users’ his-

torical interactions) S = {𝑆𝑢1 , 𝑆𝑢2 , · · · , 𝑆𝑢 |U| } over the user setU =
{𝑢1, 𝑢2, · · · , 𝑢 |U | } and item universeV = {𝑣1, 𝑣2, · · · , 𝑣 |V | }. Each

sequence is generated by a user𝑢 and defined as 𝑆𝑢 = [𝑠𝑢1 , 𝑠
𝑢
2 , · · · , 𝑠

𝑢
𝑛 ],

where 𝑠𝑢𝑛 is the last item interacted by user𝑢 and 𝑠𝑢𝑖 ∈ V . Our model

aims to generate a noiseless subsequence 𝑆𝑢+ = [𝑠𝑢1+, 𝑠
𝑢
2+, · · · , 𝑠

𝑢
𝑛+]

for each input sequence 𝑆𝑢 , where |𝑆𝑢+ | ≤ |𝑆𝑢 |. Then we take 𝑆𝑢+ as

the input to a downstream sequential recommender to learn the

sequence representation and make recommendations.

As illustrated in Figure 2, HSD consists of four major compo-

nents, including the user- and sequence-level signal generation

layers to generate inconsistency signals for sequence denoising, the

recommendation layer (i.e., an arbitrary sequential recommender)

to learn the representation of the clean subsequence and the final

prediction layer. In the following, we detail each component.

2.1 Embedding Layer

To train HSD, we generate item 𝑣𝑖 ’s embedding by mapping its ID

into a dense embedding vector ℎ𝑖 ∈ R
𝑑 , where 𝑑 is the dimension

of the embedding vector. Specifically, we build a parameter matrix

as an embedding look-up table for embedding initialization as

𝒉𝑣𝑖 = 𝒙𝑣𝑖𝑾ℎ, (1)

where𝑾ℎ is a trainable matrix, and 𝒙𝑣𝑖 is the one-hot encoding
of 𝑣𝑖 ’s ID. Note that for Transformer-based recommenders, the

position embeddings can be similarly learned from one-hot vectors

and a trainable parameter matrix.

2.2 User-Level Signal Generation Layer

Users’ historical interactions are typically long-term sequences,

and the evolving user interests may cause inconsistencies between

long-term and short-term interactions [25, 31, 58]. Our insight is

that this phenomenon provides critical information for sequence

denoising because noisy items typically differ from the user intent

within the evolving process. Therefore, our key idea is to simulate

the evolving process and detect inconsistencies as potential noisy

items. To do so, we first disentangle user intents into long-term and
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Figure 2: The overall architecture of the proposed HSD model.

short-term representations. Then, we simulate the evolving process

by comparing each item with the above intents through different

discriminators to detect inconsistencies.

To represent the short-term user intent, previous methods sup-

pose that recent interactions are more critical to user intent rep-

resentations. It is natural to use the last 𝑚 items to well reflect

short-term user intent [23, 24, 48], or as a query vector to assign

weights [13, 20, 26, 46]. However, this is sub-optimal because the

next item itself may raise a short-term intent shift. Therefore, we

propose to leverage the actual next item as the short-term intent dur-

ing the training process, which can satisfactorily avoid the problem.

Furthermore, instead of utilizing the items straightly, we incorpo-

rate user embeddings to match all items in the sequence to learn

the long-term user intent. This design has a notable advantage in

that we can utilize sequentiality and personality simultaneously

to reveal user intents in sequences. Consequently, we could for-

mulate the short-term user intent 𝒆𝑠𝑢 and long-term user intent 𝒆𝑙𝑢
representations as follows:

𝒆𝑠𝑢 = 𝒉𝑠𝑢𝑛+1 , 𝒆
𝑙
𝑢 = 𝒉𝑢 , (2)

where 𝒉𝑠𝑢𝑛+1 ∈ R
𝑑 is the embedding of the input sequence 𝑆𝑢 ’s next

item 𝑠𝑢𝑛+1, and 𝒉𝑢 ∈ R𝑑 is 𝑢’s embedding, which can be similarly

learned from one-hot vectors (i.e., 𝑢’s ID) and a trainable parameter

matrix. After that, we can leverage the above intent representations

to query each item and obtain short-term and long-term inconsis-

tency scores for short term and long term. An intuitive way is to

calculate paired-wise similarity between the above intents and each

item in a heuristic manner, e.g., cosine similarity. However, the

straightforward similarity measure may mislead the subsequent de-

tection process in the absence of supervised signals and additional

prior knowledge. For this reason, we propose two discriminators

to judge whether inconsistencies exist.

2.2.1 Short-Term User Intent Discriminator. First, we leverage a

soft-attention mechanism as a discriminator to detect inconsisten-

cies between items and the short-term intent. The key idea is to

utilize the short-term intent representation as a query vector and

assign different attention weights 𝜶 𝑠𝑢𝑖
to each item 𝑠𝑢𝑖 ∈ 𝑆𝑢 as

𝜶 𝑠𝑢𝑖
= 𝜎 (tanh(𝒉𝑠𝑢𝑖 𝑾1 + 𝒆𝑠𝑢𝑾2)𝑾3), (3)

where 𝜎 (·) is the sigmoid function, 𝒉𝑠𝑢𝑖 ∈ R𝑑 is item 𝑠𝑢𝑖 ’s embed-

ding, and 𝑾1,𝑾2 ∈ R𝑑×𝑑 , 𝑾3 ∈ R𝑑×2 are trainable parameter

matrices. Note that 𝜶 𝑠𝑢𝑖
∈ R2, where the first dimension indicates

the consistency between 𝒉𝑠𝑢𝑖 and the short-term user intent rep-

resentation 𝒆𝑠𝑢 , while the second dimension means inconsistency.

Therefore, the scores can be treated as a binary distribution (i.e.,

consistency vs. inconsistency). To generate binary values (i.e., 0 vs.

1) and facilitate gradient back-propagation, we utilize a Gumbel-

softmax function [39, 45, 52] suggested by CLEA [29] to support

model learning via

𝒂𝑠𝑢𝑖 = Gumbel-softmax(𝜶 𝑠𝑢𝑖
, 𝜏),

𝒂𝑠𝑢𝑖 =
exp(log(𝜶 𝑠𝑢𝑖 , 𝑗

) + 𝑔 𝑗 )/𝜏
∑1

𝑗=0 exp(log(𝜶 𝑠𝑢𝑖 , 𝑗
) + 𝑔 𝑗 )/𝜏

,
(4)

where 𝒂𝑠𝑢𝑖 ∈ R2 indicates whether an item 𝑠𝑢𝑖 is consistent with the

short-term user intent, 𝜏 > 0 is the temperature parameter to con-

trol the selection distribution, and 𝑔 𝑗 is i.i.d sampled from a Gumbel
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distribution as noisy disturber. When 𝜏 → 0, 𝒂𝑠𝑢𝑖 approximates a

one-hot vector (i.e., hard selection). When 𝜏 → ∞, 𝒂𝑠𝑢𝑖 approxi-

mates a uniform distribution. When 𝜏 → 1, the Gumbel-softmax

function is identical to the general Softmax function.

2.2.2 Long-Term User Intent Discriminator. Unlike the short-term

user intent that can be explicitly represented based on the next item

in the training process, detecting inconsistent items with respect to

the long-term user intent renders non-trivial technical challenges

and needs a careful design. Intuitively, we can leverage a similar

discriminator to detect items inconsistent with the long-term user

intent. However, this attempt may be sub-optimal according to the

following reasons. (1) Due to the complementary principle in multi-

view learning [9, 47, 49], two similar discriminators may not be able

to distinguish between long-term and short-term user intents and

only provide less information. (2) Without another optimization

objective function, the long-term user intent representation may

be misled. Consequently, we propose to train another long-term

user intent “discriminator” and gradually enhance its confidence.

Specifically, we resort to the contrastive learning paradigm [5, 57]

to detect inconsistencies through the training loss. Accordingly, we

can enforce the long-term user intent to pull items in the sequence

and push a randomly sampled item during training. Therefore, we

deem that inconsistencies occur when the long-term user intent

is difficult to fit a few items. Mathematically, we could formulate

this process as a triple loss function for each user 𝑢 to pull his/her

interactions and push a randomly sampled one via

L𝑢 =
1

𝑛

∑

𝑠𝑢𝑖 ∈𝑆
𝑢

L(𝑢, 𝑠𝑢𝑖 , 𝑣
𝑢
𝑗 ),

L(𝑢, 𝑠𝑢𝑖 , 𝑣
𝑢
𝑗 ) = − log(𝜎 (sim(𝒆𝑙𝑢 ,𝒉𝑠𝑢𝑖 ) − sim(𝒆𝑙𝑢 ,𝒉𝑣𝑢𝑗 ))),

(5)

where 𝑣𝑢𝑗 is the randomly sampled item not in user 𝑢’s sequence,

and sim(·) is a similarity calculation function, e.g., inner product.

However, the long-term user intent representation may be unre-

liable (i.e., pull noisy items) during the training process. To tackle

this problem, we leverage the idea of curriculum learning [1, 4, 41]

to derive a hard-to-easy strategy, which, unlike the general easy-to-

hard strategy, learns a robust long-term user intent representation.

Inspired by Wang et al. [40], we rank all items’ loss values and

set the loss values of the highest 𝜇 percent of items to 0, where 𝜇
is a dynamic ratio parameter. It is because these items are harder

to fit by the user’s long-term intent than others in the sequence

and are considered inconsistencies. Specifically, during the training

progress, we smoothly increase 𝜇 from 0 to an upper bound of𝑀
until epoch 𝑇 with increasing training iterations, where 𝑀 and

𝑇 are pre-defined parameters. Therefore, at the early stage of the

training process, we enforce the long-term intent representation

to pull all interactions to learn more information and enhance its

robustness by gradually discarding “difficult” items (i.e., with higher

loss values) to perform the hard-to-easy strategy. Accordingly, we

can treat the well-learned long-term user intent representation as a

more robust user intent query vector and feed it to the short-term

inconsistency discriminator (i.e., Eq. (4)) to identify potential noisy

items during the inference process.

2.3 Sequence-Level Signal Generation Layer

With the above generation layer, we can learn which items are

inconsistent with a user’s intents. However, since the generated

signals are pseudo-labels without supervised signals, the detected

inconsistencies may not be the inherent noisy items in sequences.

To this end, we further introduce sequence-level signals to improve

the reliability of detected inherent noise.

2.3.1 Context-Aware Autoencoder. Recall that informative items in

a sequence normally exhibit smooth sequentiality over surround-

ing items while noisy items do not. Therefore, once we fuse each

item with its context to learn contextual semantics, noisy items

should be difficult to be reconstructed from the mixture, and we

can compare the difficulty levels of information reconstruction to

detect inconsistencies. Consequently, we propose a context-aware

autoencoder based on a bi-directional long-short term memory neu-

ral network (Bi-LSTM) to learn contextual semantics and perform

information reconstruction. More specifically, we input a sequence

to the Bi-LSTM and combine (e.g., sum pooling) the bi-directional

hidden states of each item as an encoded vector. After that, we

again input this state sequence to the same Bi-LSTM to reconstruct

each item’s original information. We can formulate this process via

�̃�
𝐿
𝑆𝑢 , �̃�

𝑅
𝑆𝑢 = Bi-LSTM(𝑯𝑆𝑢 ,Θ1),

�̃�𝑆𝑢 = �̃�
𝐿
𝑆𝑢 + �̃�

𝑅
𝑆𝑢 ,

�̂�
𝐿
𝑆𝑢 , �̂�

𝑅
𝑆𝑢 = Bi-LSTM(�̃�𝑆𝑢 ,Θ1),

�̂�𝑆𝑢 = �̂�
𝐿
𝑆𝑢 + �̂�

𝑅
𝑆𝑢 ,

(6)

where 𝑯𝑆𝑢 = [𝒉𝑠𝑢1 ,𝒉𝑠
𝑢
2
, · · · ,𝒉𝑠𝑢𝑛 ] ∈ R𝑛×𝑑 consists of the embed-

dings of all items in 𝑆𝑢 , �̃�
𝐿
𝑆𝑢 , �̃�

𝑅
𝑆𝑢 ∈ R𝑛×𝑑 are encoded bi-directional

hidden states, �̂�𝑆𝑢 ∈ R𝑛×𝑑 is the decoded embedding sequence,

and Θ1 is the set of trainable parameters of the Bi-LSTM. After

obtaining the decoded embedding sequence, we can calculate the

reconstruction loss for the original input sequence 𝑆𝑢 via

L𝑆𝑢 =
1

𝑛

𝑛∑

𝑗=1

(�̂�𝑠𝑢𝑖 − 𝒉𝑠𝑢𝑖 )
2 . (7)

We could minimize Eq. (7) to improve the reconstruction abil-

ity. However, at the beginning of the training process, the noisy

items may mislead the autoencoder reconstruction (i.e., higher loss),

making the decoded results unreliable for inconsistency detection.

An intuitive way is to pre-train the autoencoder and leverage it

to detect noisy items. However, it may not work because there

is no absolute clean training dataset to train the autoencoder. In

practice, it is reasonable to assume that there are only a few noisy

items in a dataset, and thus we can leverage the idea of curriculum

learning again to tackle the above problem. Since L𝑆𝑢 accumu-

lates the reconstruction loss values of all items in the sequence 𝑆𝑢 ,
relatively clean sequences (i.e., containing less noise) should have

lower loss values. Thus, at the early stage of training, we only use

“easy” sequences (i.e., with lower loss values) in each mini-batch to

train the autoencoder, and gradually increase the difficulty level to

perform a general easy-to-hard strategy, which is different from the

hard-to-easy strategy used in Section 2.2. Specifically, during the
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training process, we rank all sequences’ loss values in each mini-

batch according to Eq. (7), and set the loss values of the highest

𝑀 − 𝜇 percent of sequences to 0 until epoch 𝑇 .

2.3.2 Sequence-Level Context Discriminator. According to Eq. (6),

we can obtain each item’s original and decoded vectors. We could

feed them into a fully connected layer to calculate inconsistency

scores. However, minimizing the reconstruction loss makes the

difference between the above representations difficult to detect. In-

spired by ConvKB [27], we leverage a convolutional neural network

to enhance the detection ability for capturing dimension-wise differ-

ences. Specifically, we concatenate each item’s original embedding

with the decoded one and utilize a convolution operator to preserve

dimension-wise information and detect the subtle differences via

𝒄𝑠𝑢𝑖 = Conv𝑖 ( [�̂�𝑠𝑢𝑖 ‖𝒉𝑠
𝑢
𝑖
],Θ𝑖

2),

𝜷𝑠𝑢𝑖
= 𝜎 (𝒄𝑠𝑢𝑖 𝑾4),

(8)

where Conv(·) is a 2-d convolution operation with filter size 2 ×

1 and stride 1, Θ𝑖
2 is the trainable parameters for each channel

(i.e., item), 𝑾4 ∈ R2𝑑×2 is a trainable parameter matrix, and ‖ is

the concatenation operation. Similarly, 𝜷𝑠𝑢𝑖
∈ R2, where the first

dimension indicates the consistency between 𝒉𝑠𝑢𝑖 and �̂�𝑠𝑢𝑖 , while
the second dimension indicates the inconsistency. Since 𝜷𝑠𝑢𝑖

is also

a binary distribution, we use a similar process to generate binary

values for 𝜷𝑠𝑢𝑖
via

𝒃𝑠𝑢𝑖 = Gumbel-softmax(𝜷𝑠𝑢𝑖
, 𝜏),

𝒃𝑠𝑢𝑖 =
exp(log(𝜷𝑠𝑢𝑖 , 𝑗

) + 𝑔 𝑗 )/𝜏
∑1

𝑗=0 exp(log(𝜷𝑠𝑢𝑖 , 𝑗
) + 𝑔 𝑗 )/𝜏

,
(9)

where 𝜏 is the same temperature parameter used in Eq. (4) to tune

the learned distribution from the Gumbel-softmax function.

2.4 Sequential Recommender

With the above generation layers, we are ready to identify inherent

noisy items in sequences from both user- and sequence-level signals.

A first attempt is to identify an item as noise if it is inconsistent

with either the corresponding user intent or the sequence context.

However, in practice, it will introduce many false positives and

lose advantageous information for sequential recommendation.

Thus, we propose to design more strict signals to remove only

reliable noise without losing useful information. We can treat the

above inconsistency generation processes as two different views of

noisy items and consider items as inherent noise only if these two

views detect some inconsistencies simultaneously. This is generally

backed up by the consensus principle.

Formally, we generate the noiseless subsequence 𝑆𝑢+ from the

input sequence 𝑆𝑢 via

𝑟𝑠𝑢𝑖 = 𝑎𝑠𝑢𝑖 𝑏𝑠
𝑢
𝑖
,

𝑯𝑢
+ = [𝑟𝑠𝑢1 𝒉𝑠

𝑢
1
, 𝑟𝑠𝑢2 𝒉𝑠

𝑢
2
, · · · , 𝑟𝑠𝑢𝑛𝒉𝑠𝑢𝑛 ],

(10)

where 𝑟𝑠𝑢𝑖 ∈ {1, 0} indicates whether an item 𝑠𝑢𝑖 is noisy (i.e., 𝑟𝑠𝑢𝑖 =
1) or not (𝑎𝑠𝑢𝑖 and 𝑏𝑠𝑢𝑖 are the second dimension of 𝒂𝑠𝑢𝑖 and 𝒃𝑠𝑢𝑖 ,
respectively). Note that we apply the signals to the original item

embedding sequence 𝑯𝑢
𝑆 , instead of the original input sequence

𝑆𝑢 , to support gradient back-propagation. After that, we can feed

𝑯𝑢
+ into various mainstream sequential recommendation models

to learn better sequence representations as follows:

𝒆𝑺𝒖+ = F(𝑯𝑢
+), (11)

where F(·) is a sequential recommendation model based on repre-

sentation learning, which takes as input the noiseless item embed-

ding sequence 𝑯𝑢
+, and outputs sequence representations.

2.5 Prediction and Model Optimization

After obtaining the noiseless representations, we make the next-

item recommendation by computing a probability distribution of

the next item over the entire item universe. For each candidate item

𝑣𝑖 ∈ V , we can calculate its relevance to the sequence via

𝑧𝑖 = 𝒆𝑆𝑢+ 𝒉
T
𝑣𝑖 . (12)

Then the predicted probability of the next item being 𝑣𝑖 (i.e., 𝑦𝑖 )
can be computed by

𝑦𝑖 =
exp(𝑧𝑖 )∑

𝑣𝑗 ∈V exp(𝑧 𝑗 )
. (13)

Therefore, we can formulate the recommendation task as minimiz-

ing the cross-entropy of the prediction results 𝑦𝑖 :

L(y, ŷ) = −

|V |∑

𝑖=1

(𝑦𝑖 log(𝑦𝑖 ) + (1 − 𝑦𝑖 ) log(1 − 𝑦𝑖 )) , (14)

where y denotes the one-hot encoding of the ground truth item.

Finally, we train our model with the sequential recommender by

minimizing the total loss function according to Eq. (5), Eq. (7) and

Eq. (14) as follows:

𝐿𝑜𝑠𝑠 =
1

|U|

∑

𝑢∈U

(L(y, ŷ) + L𝑢 + L𝑆𝑢 ) + 𝜆‖Θ‖22, (15)

where 𝜆 is a hyper-parameter controlling the strength of 𝐿2 regu-
larization, and Θ is the set of model parameters.

3 EXPERIMENTS

In this section, we perform comprehensive experiments on our

proposed HSD model and a large number of state-of-the-art sequen-

tial recommendation models over five public real-world datasets.

Specifically, our experiments are devised to answer the key research

questions as follows:

• RQ1: How does integrating HSD into different mainstream se-

quential models perform compared with the original ones and

other state-of-the-art denoising methods?

• RQ2: How do different inconsistency signal generation layers in

HSD contribute to the performance?

• RQ3: How do the learned inconsistency signals in HSD affect

the sequence denoising process?

3.1 Experimental Settings

3.1.1 Datasets. We conduct experiments on five datasets widely

used in the literature to evaluate the effectiveness of HSD: (1)

MovieLens1: It contains users’ reviews and ratings on movies

and is a popular dataset for sequential recommendation models.

We use both the 100k and 1M versions (ML-100k and ML-1M for

1https://movielens.org/
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Table 1: Statistics of the datasets

Dataset # Sequences # users # Items # Sparsity

ML-100k 99,287 944 1,350 92.21%

ML-1M 999,611 6,041 3,417 95.16%

Beauty 198,502 22,364 12,102 99.93%

Sports 296,337 35,599 18,358 99.95%

Yelp 317,078 30,495 20,062 99.95%

short) in the experiments. (2) Amazon-Beauty and Sports2: the

Amazon datasets record users’ historical purchases over abundant

products and are also widely used in previous works[37, 40, 59]. We

conduct experiments on two representative subcategories: beauty

and sports. (3) Yelp3: It is another popular dataset for business

recommendations, which contains user reviews of restaurants and

bars. As its large size, we only use the transaction records after

January 1st, 2019. Following the previous studies [12, 30, 32, 59], we

filter out infrequent items whose frequency is less than 5 and short

sequences with less than 5 items. We set the maximum sequence

length to 200 for ML-1M and 50 for all other datasets.

Identical to the previous methods[37, 53, 59], we group user in-

teractions in chronological order on all datasets, and split data by

the leave-one-out strategy. For example, for an input sequence 𝑆𝑢 =
[𝑠𝑢1 , · · · , 𝑠

𝑢
𝑛 , 𝑠

𝑢
𝑛+1, 𝑠

𝑢
𝑛+2, 𝑠

𝑢
𝑛+3], we use ([𝑠

𝑢
1 , · · · , 𝑠

𝑢
𝑛 ], 𝑠

𝑢
𝑛+1) for training,

([𝑠𝑢1 , · · · , 𝑠
𝑢
𝑛+1], 𝑠

𝑢
𝑛+2) for validation, and ([𝑠𝑢1 , · · · , 𝑠

𝑢
𝑛+2], 𝑠

𝑢
𝑛+3) for

testing.We employ a variety of common evaluation metrics adopted

in literature [55, 59] to evaluate the performance of all methods, in-

cluding Hit Ratio (HR@K), Normalized Discounted Cumulative Gain

(NDCG@K, N@K for short), and Mean Reciprocal Rank (MRR@K).

In this paper, we report results on HR@{5,10,20}, NDCG@{5,10,20}

and MRR@20 (MRR for short) over the entire item universe (i.e.,

full ranking), instead of sampling, to avoid the bias introduced by

the sampling process [2, 19]. The properties of the preprocessed

datasets are summarized in Table 1.

3.1.2 Competing Models. To demonstrate the effectiveness of our

proposed sequence denoising paradigm, we integrate HSD with a

wide range of representative methods, and compare the boosted per-

formance with the state-of-the-art denoising methods. We consider

the following sequential recommendationmodels: (1)GRU4Rec [11]

uses gated recurrent units (GRUs) to learn session representations.

(2) NARM [20] leverages a hybrid encoder with an attention mech-

anism to model user sequential behavior. (3) STAMP [23] equips

with a short-term attention/memory priority model to capture user

intent. (4) CASER [35] leverages horizontal and vertical convo-

lutions for sequential recommendation. (5) SASRec [15] uses the

multi-head attention mechanism to learn sequence representations.

(6) BERT4Rec [32] leverages deep bidirectional Transformer and

a mask & fill task to enhance sequence representations.

We consider the following denoising methods: (1) DSAN [53]

explores a trainable virtual target item embedding to model the

user’s current preference and applies an adaptive sparse trans-

formation function to eliminate the effect of unrelated items. (2)

2http://jmcauley.ucsd.edu/data/amazon/
3https://www.yelp.com/dataset

FMLP-Rec [59] incorporates a Fast Fourier Transform (FFT) and

an inverse FFT procedure to reduce the potential influence of noise

to learn better sequence representations.

3.1.3 Implementation Details. Identical to the settings of previous

methods [20, 23, 44, 46, 53], we fix the default embedding size to

100 and mini-batch size to 256 for all methods, and the embedding

parameters are initialized with a Gaussian distribution. We use the

Adam optimizer [18] with a default learning rate of 0.001, and adopt

the early-stopping training strategy if the HR@20 performance

on the validation set decreases for 10 continuous epochs. The 𝐿2
regularization coefficient is searched in {0, 10−3, 10−4}. In particular,
we set the default dynamic ratio parameter 𝜇’s upper bound as

𝑀 = 20 and smoothly increase 𝜇 from 0 to 𝑀 until epoch 𝑇 = 10

to control the curriculum learning process, which is determined

by the 20/80 principle [34]. Following previous studies [14, 29],

we set the initial temperature parameter as 𝜏 = 0.5 and anneal

it after every 40 batches. The hyper-parameters of all competing

models either follow the suggestions from the original papers or are

carefully tuned on the validation data, and the best performances are

reported. We implement our model in PyTorch 1.7.1, Python 3.7.0,

and RecBole v1.0.1 [56]. We conduct experiments on a workstation

with an Intel Xeon Platinum 2.40GHz CPU, an NVIDIA Quadro

RTX 8000 GPU, and 754GB RAM.

3.2 Overall Performance Comparison (RQ1)

We report the main experimental results in Table 2 and Table 3,

where the best results are boldfaced and the second-best results

are underlined. Imprv stands for the average improvements, and all

improvements are significant by performing two-sided t-test with

𝑝 < 0.05 over the baseline.

• From Table 2, it can be observed that the base models with HSD

show significant improvements in most cases on all datasets.

In particular, compared to BERT4Rec, HSD+BERT4Rec achieves

relative average improvements of all evaluation metrics as 52.68%,

95.82%, 262.99%, 102.39% and 246.14% onML-100k,ML-1M, Beauty,

Sports and Yelp, respectively. Such results generally demonstrate

the superiority and applicability of our solution over a wide

variety of mainstream sequential recommendation models. Com-

pared with the original methods, integrating with HSD can learn

better sequence representations from the generated noiseless

subsequences, and thus improve their performance in most cases.

For the only exception (i.e., N@10 of NARM with or without

HSD on ML-100k), the performance drop is marginal (0.0202 vs.

0.0201). We suspect that it is caused by the learning ability of

NARM itself on this specific dataset.

• From Table 3, it can be seen that HSD+BERT4Rec consistently

yields the best performance on all cases and that even the worst

combinations (i.e., HSD+NARM and HSD+Caser) can achieve

significant improvements in most cases. Such results generally

demonstrate the superiority and applicability of our solution

again. In particular, when comparing HSD with FMLP-Rec, we

can observe the benefits of explicitly removing noisy items; when

comparing HSD with DSAN, we can observe the benefits of re-

moving only inherently noisy items, instead of the items irrele-

vant to a target item.
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Table 2: Experimental results of different sequential recommendation methods with (w) or without (w/o) HSD on the five

datasets. The best results are boldfaced, and Imprv indicates the average improvements over all metrics. All improvements are

statistically significant (i.e., two-sided t-tests with 𝑝 < 0.05).

Datasets Metric
GRU4Rec NARM STAMP Caser SASRec BERT4Rec

w/o w w/o w w/o w w/o w w/o w w/o w

ML-100k

HR@5 0.0191 0.0276 0.0180 0.0223 0.0201 0.0255 0.0212 0.0255 0.0191 0.0371 0.0191 0.0339

HR@10 0.0286 0.0488 0.0403 0.0403 0.0392 0.0467 0.0339 0.0477 0.0371 0.0583 0.0414 0.0732

HR@20 0.0594 0.0742 0.0657 0.0785 0.0700 0.0870 0.0679 0.0742 0.0764 0.1018 0.0912 0.1294

N@5 0.0104 0.0173 0.0132 0.0144 0.0115 0.0151 0.0113 0.0154 0.0114 0.0225 0.0117 0.0178

N@10 0.0134 0.0241 0.0202 0.0201 0.0176 0.0217 0.0153 0.0224 0.0172 0.0292 0.0189 0.0305

N@20 0.0212 0.0306 0.0267 0.0299 0.0253 0.0320 0.0238 0.0291 0.0270 0.0401 0.0315 0.0447

MRR 0.0109 0.0185 0.0162 0.0169 0.0132 0.0171 0.0119 0.0168 0.0139 0.0234 0.0157 0.0218

Imprv. 63.91% 7.82% 26.78% 35.74% 71.88% 52.68%

ML-1M

HR@5 0.0194 0.0260 0.0151 0.0260 0.0232 0.0301 0.0104 0.0252 0.0397 0.0500 0.0224 0.0477

HR@10 0.0373 0.0427 0.0349 0.0417 0.0440 0.0530 0.0215 0.0424 0.0666 0.0858 0.0495 0.0886

HR@20 0.0690 0.0745 0.0591 0.0677 0.0677 0.0899 0.0589 0.0725 0.1007 0.1326 0.0980 0.1399

N@5 0.0135 0.0152 0.0080 0.0162 0.0150 0.0190 0.0063 0.0161 0.0207 0.0282 0.0132 0.0297

N@10 0.0190 0.0206 0.0144 0.0212 0.0218 0.0264 0.0099 0.0216 0.0294 0.0397 0.0218 0.0429

N@20 0.0270 0.0286 0.0205 0.0277 0.0278 0.0357 0.0194 0.0291 0.0379 0.0515 0.0339 0.0558

MRR 0.0159 0.0161 0.0100 0.0168 0.0168 0.0209 0.0091 0.0173 0.0203 0.0290 0.0169 0.0328

Imprv. 9.68% 62.42% 25.63% 108.61% 36.26% 95.82%

Beauty

HR@5 0.0077 0.0131 0.0120 0.0187 0.0080 0.0201 0.0072 0.0106 0.0242 0.0267 0.0060 0.0261

HR@10 0.0135 0.0229 0.0209 0.0311 0.0135 0.0325 0.0133 0.0183 0.0386 0.0449 0.0127 0.0447

HR@20 0.0256 0.0378 0.0367 0.0495 0.0231 0.0505 0.0235 0.0290 0.0561 0.0674 0.0204 0.0683

N@5 0.0045 0.0082 0.0071 0.0114 0.0046 0.0128 0.0044 0.0064 0.0129 0.0147 0.0037 0.0147

N@10 0.0064 0.0113 0.0099 0.0153 0.0064 0.0168 0.0064 0.0089 0.0175 0.0205 0.0059 0.0207

N@20 0.0094 0.0150 0.0139 0.0199 0.0088 0.0213 0.0090 0.0116 0.0219 0.0261 0.0078 0.0266

MRR 0.0051 0.0088 0.0077 0.0118 0.0049 0.0133 0.0051 0.0068 0.0122 0.0146 0.0044 0.0151

Imprv. 71.71% 52.54% 161.44% 38.06% 17.05% 262.99%

Sports

HR@5 0.0064 0.0097 0.0090 0.0096 0.0071 0.0097 0.0069 0.0077 0.0113 0.0131 0.0055 0.0135

HR@10 0.0114 0.0152 0.0138 0.0169 0.0123 0.0155 0.0115 0.0129 0.0175 0.0224 0.0104 0.0224

HR@20 0.0183 0.0230 0.0223 0.0282 0.0182 0.0252 0.0178 0.0214 0.0268 0.0348 0.0167 0.0365

N@5 0.0035 0.0067 0.0058 0.0063 0.0046 0.0065 0.0046 0.0049 0.0059 0.0071 0.0036 0.0072

N@10 0.0051 0.0085 0.0073 0.0087 0.0062 0.0084 0.0061 0.0065 0.0079 0.0100 0.0051 0.0101

N@20 0.0068 0.0105 0.0094 0.0115 0.0077 0.0108 0.0077 0.0086 0.0102 0.0132 0.0067 0.0137

MRR 0.0036 0.0070 0.0059 0.0070 0.0048 0.0069 0.0049 0.0052 0.0055 0.0071 0.0040 0.0073

Imprv. 71.53% 17.12% 39.05% 8.85% 25.80% 102.39%

yelp

HR@5 0.0057 0.0104 0.0113 0.0180 0.0060 0.0147 0.0045 0.0169 0.0293 0.0334 0.0087 0.0292

HR@10 0.0102 0.0180 0.0187 0.0248 0.0099 0.0216 0.0084 0.0198 0.0352 0.0446 0.0159 0.0408

HR@20 0.0184 0.0317 0.0315 0.0349 0.0161 0.0345 0.0146 0.0251 0.0439 0.0613 0.0273 0.0593

N@5 0.0034 0.0066 0.0075 0.0142 0.0038 0.0107 0.0028 0.0151 0.0251 0.0255 0.0054 0.0223

N@10 0.0048 0.0090 0.0099 0.0164 0.0051 0.0129 0.0040 0.0160 0.0270 0.0291 0.0077 0.0260

N@20 0.0068 0.0124 0.0131 0.0189 0.0066 0.0162 0.0055 0.0173 0.0292 0.0333 0.0105 0.0307

MRR 0.0037 0.0072 0.0081 0.0145 0.0040 0.0112 0.0031 0.0152 0.0250 0.0255 0.0060 0.0228

Imprv. 87.83% 64.52% 158.53% 315.36% 11.33% 246.14%

3.3 Ablation Study (RQ2)

To verify the contributions of different components in HSD, we

conduct an ablation study with several variants on ML-100k. We

consider three variants of HSD+BERT4Rec: (1) w/o long-term; (2)

w/o short-term; (3) w/o sequence-level. As shown in Figure 3, each

signal positively contributes to performance. The best results are

consistently achieved with all signal generation layers, which well

validates our motivation that leveraging multiple inconsistency
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Table 3: The experimental comparison between HSD with the best/worst base model and the state-of-the-art denoising methods

on the five datasets. The best results are boldfaced, the second-best results are underlined. Imprv indicates the average

improvements between the best and worst ones over the baselines. All improvements are statistically significant (i.e., two-sided

t-test with 𝑝 < 0.05) over the best baselines.

Dataset Model HR@5 HR@10 HR@20 N@5 N@10 N@20 MRR

ML-100k

DSAN (AAAI’21) 0.0201 0.0435 0.0700 0.0115 0.0188 0.0254 0.0133

FMLP-Rec (WWW’22) 0.0170 0.0477 0.0764 0.0117 0.0216 0.0288 0.0160

HSD+NARM 0.0223 0.0403 0.0785 0.0144 0.0201 0.0299 0.0169

HSD+BERT4Rec 0.0339 0.0732 0.1294 0.0178 0.0305 0.0447 0.0218

Imprv. 40%±29% 19%±34% 36%±33% 38%±15% 17%±24% 30%±26% 21%±15%

ML-1M

DSAN 0.0098 0.0336 0.0651 0.0048 0.0122 0.0200 0.0081

FMLP-Rec 0.0210 0.0449 0.0707 0.0120 0.0199 0.0263 0.0142

HSD+NARM 0.0260 0.0417 0.0677 0.0162 0.0212 0.0277 0.0168

HSD+BERT4Rec 0.0477 0.0886 0.1399 0.0297 0.0429 0.0558 0.0328

Imprv. 75%±52% 45%±52% 47%±51% 91%±56% 61%±55% 59%±53% 75%±56%

Beauty

DSAN 0.0092 0.0152 0.0264 0.0058 0.0077 0.0105 0.0062

FMLP-Rec 0.0095 0.0166 0.0284 0.0056 0.0078 0.0107 0.0060

HSD+Caser 0.0106 0.0183 0.0290 0.0064 0.0089 0.0116 0.0068

HSD+BERT4Rec 0.0261 0.0447 0.0683 0.0147 0.0207 0.0266 0.0151

Imprv. 93%±82% 90%±80% 71%±69% 82%±72% 90%±76% 79%±70% 77%±67%

Sports

DSAN 0.0061 0.0105 0.0215 0.0042 0.0056 0.0084 0.0049

FMLP-Rec 0.0068 0.0117 0.0180 0.0044 0.0059 0.0075 0.0046

HSD+Caser 0.0077 0.0129 0.0214 0.0049 0.0065 0.0086 0.0052

HSD+BERT4Rec 0.0120 0.0190 0.0303 0.0078 0.0100 0.0129 0.0081

Imprv. 45%±32% 36%±26% 20%±21% 44%±33% 40%±30% 28%±26% 36%±30%

Yelp

DSAN 0.0269 0.0369 0.0541 0.0211 0.0242 0.0285 0.0216

FMLP-Rec 0.0203 0.0294 0.0436 0.0142 0.0171 0.0207 0.0144

HSD+GRU4Rec 0.0104 0.0180 0.0317 0.0066 0.0090 0.0124 0.0072

HSD+BERT4Rec 0.0292 0.0408 0.0593 0.0223 0.0260 0.0307 0.0228

Imprv. -26%±35% -20%±31% -16%±26% -32%±37% -28%±35% -24%±32% -31%±36%

signals in a strict way can more reliably eliminate noisy items while

preserving useful information. Similar results can be observed on

other model combinations and datasets.

3.4 Case Study (RQ3)

Finally, we conduct a case study to illustrate how the hierarchical

inconsistency signals learned in HSD+BERT4Rec can affect the

sequence denoising process. In Figure 4, we show a user whose ID

is 70 and whose historical interactions starts with item ID 4025 and

ends with item ID 10379 from the ML-100k dataset. From the user-

level signal, we can learn that items with ID 4025, 7089, 10984, and

10379 have high consistency with the user’s intent. Therefore, the

potential noisy item set is reduced to item ID {9087, 10759}. From
the sequence-level signal, we can learn that items with ID 4025 and

9087 have high consistency with the sequence context. After that,

the potential noisy item set is further reduced to item ID {10759}.

In the above process, item ID {7089, 9087, 10759, 10984, 10379} are

either inconsistent with the user intent or the sequence context. If

we identify all the above items as noise and remove them from the

sequence, there will be an inevitable loss of information. Combining

the two types of signals, we consider only item ID 10759 as noise

and drop it to generate a noiseless subsequence. This case aligns

with our assumption that inherent noisy items in sequences should

be of a small amount.

4 RELATEDWORK

Sequential Recommendation Methods. The key idea of sequential rec-

ommendation is to explicitly exploit the temporal order of users’ his-

torical interactions for next-item prediction. Some earlier research

utilizes Markov chains (MC) to mine sequential patterns in histori-

cal data [30]. With the rapid development of deep learning, most

recent sequential recommendationmethods feed sequences into var-

ious deep models to learn sequence representations and unveil user

intent. Some examples include recurrent neural networks (RNNs) [7,
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Figure 3: Impact of different inconsistency signal generation

layers.
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Figure 4: A case study to show how different inconsistency

signals affect the denoising process.

11, 35], convolutional neural networks (CNNs) [35], attention mech-

anism [15, 20, 32], and graph neural networks (GNNs) [13, 22, 26,

28, 43, 46]. There are also studies [16, 38, 42] that exploit knowledge

graphs to improve sequential recommendation. Some recent stud-

ies further utilize useful temporal information beyond temporal

order to learn user behavior [3, 6, 10, 50]. All these works assume

that the input sequences are clean. However, in practice, this is

normally not the case. Noisy items in sequences may mislead the

recommenders to learn sub-optimal sequence representations. Our

method is orthogonal to these works in that the clean subsequences

provided by HSD can be used by them to boost performance.

Denoising Approaches. Earlier works utilize user explicit feedback to

reduce the gap between implicit feedback and user preference [4, 8,

17, 36, 51, 54]. Recently, Wang et al. [40] observe that noisy feedback

typically has higher loss in the early stages of training and thus

propose an adaptive denoising training strategy to reduce noise.

In contrast, Sun et al. [33] argue that high-loss instances are not

necessarily noise, and further integrate high-loss instances with

an uncertainty measure to distinguish unreliable instances. How-

ever, the absence of supervised signals (i.e., labels indicating noisy

items) makes the problem of sequence denoising rather challenging.

One line of research proposes to implicitly reduce noise’s influence

on learning sequential representations, e.g., assigning lower atten-

tion weights to some less important items with respect to the final

sequence representation [20, 21, 23, 24, 48, 53]. Recently, FMLP-

Rec [59] treats sequence representations as signals and further

incorporates learnable filters, which perform Fast Fourier Trans-

form (FFT) to convert the input sequence representation into the

frequency domain and filter out noise through an inverse FFT pro-

cedure. While these ideas can learn better sequence representations,

there are still noisy items in sequences.

Another latest line of research explicitly removes some items by

comparing their relevance with a target item (i.e., the next item).

For example, DSAN [53] proposes to utilize the entmax function

to automatically eliminate irrelevant items’ attention weights with

a virtual target item. CLEA [29] divides a basket into positive (i.e.,

items relevant to the next item) and negative (i.e., items irrelevant to

the next item) sub-baskets by incorporating a discriminator, which

could judge whether an item is noisy. In contrast, RAP [37] models

the denoising process as a Markov Decision Processing (MDP). It

proposes to learn a policy network and force the agent to select

an appropriate action (i.e., whether to remove an item or not) to

reach the maximum long-term award. Compared with the previous

line, this idea explicitly drops some irrelevant items in sequences.

However, a large number of interactions in sequences may be irrel-

evant to the next items, while the real inherent noisy items should

be of a small amount. Motivated by the above observation, we pro-

pose to learn the hierarchical inconsistency signals and combine

these signals to identify inherent noisy items in sequences without

dropping advantageous information.

5 CONCLUSION

In this paper, we studied the problem of sequence denoising in

sequential recommendation from a new perspective – how to learn

hierarchical inconsistency signals to identify inherent noisy items

in sequences. We identified two types of inconsistency signals, in-

cluding sequence-level signals that have not been touched upon

in the literature. We consequently devised a novel HSD model

with different types of signal generation layers to effectively learn

these signals that can be used to effectively identify truly reliable

noisy items. We conducted comprehensive experiments on multiple

benchmark datasets to show that our solution can be seamlessly

integrated with a wide variety of mainstream sequential recom-

menders to boost their performance. We also showed that when

combined with different base sequential models, HSD can outper-

form state-of-the-art denoising competitors.
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